
Bayes-optimal learning of an extensive-width 

neural network from quadratically many samples 

Learning in large neural networks

A planted linear matrix model

Optimal generalization error Gradient descent performance
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with     hidden 

units

High-dimensional limit

Learning from data

Optimal generalization error

• The scaling                    is an interesting one to study wide networks:

Scaling                : multi-index phase retrieval [5]

Scaling                : linear regression reaches the optimal error

• With                samples, no information on     can be retrieved [1]

• But there are          weights to learn

Information theory hints at the scaling 

Can be generalized to noisy pre-activations

Universality of optimal generalization error [3]

from

Gaussian matrix

from

Just a (generalized) linear model on

Mapping to GLM: scalar estimation part

➢ Gaussian data ➢ Wishart prior

Formula for         

(generalization of [4]) 
It involves

Scalar estimation problem involving 

Mapping to GLM: matrix denoising part

Matches a naïve “counting argument”

Perfect recovery threshold

Noiseless setting : 

Denoising 

problem

❑ The optimal estimator is spectral [3]:

❑ Analytical expressions for        and the asymptotic MMSE

Gaussian (GOE) matrix

Marchenko-Pastur

Semicircle

solves the self-consistent equation

➢ Easy-to-evaluate formula for the 

Optimal generalization error

Optimal algorithm: GAMP-RIE

GAMP

RIE

A provably optimal for 

large   , easy-to-implement 

polynomial-time algorithm

Generalized linear 

model w. Gaussian data
with non-separable prior

Each GAMP iteration 

solves
Rotationally-Invariant Estimator (RIE) [3]

Generalized Approximate 

Message Passing (GAMP)   [2]

➢ For           (            ), the problem is 

convex over

➢ For         , non-convex problem. Still, 

naïve GD reaches optimal error !

, where

For any ,  (averaged) GD seems 

to reach the optimal MMSE

Matrix denoising on the Wishart prior 
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Sketch of the analysis Generalization error curves

Noiseless setting : 

Significantly lower generalization error

than linear regression ( ):

Smooth transition from hidden layer

size               to                [5]

Open questions

❖ Analyze other activations (beyond quadratic)

Related to extensive rank tensor denoising

❖ Account for the structure of the data

❖ Theoretical analysis of GD properties

Wishart prior

No computational to 

statistical gap
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