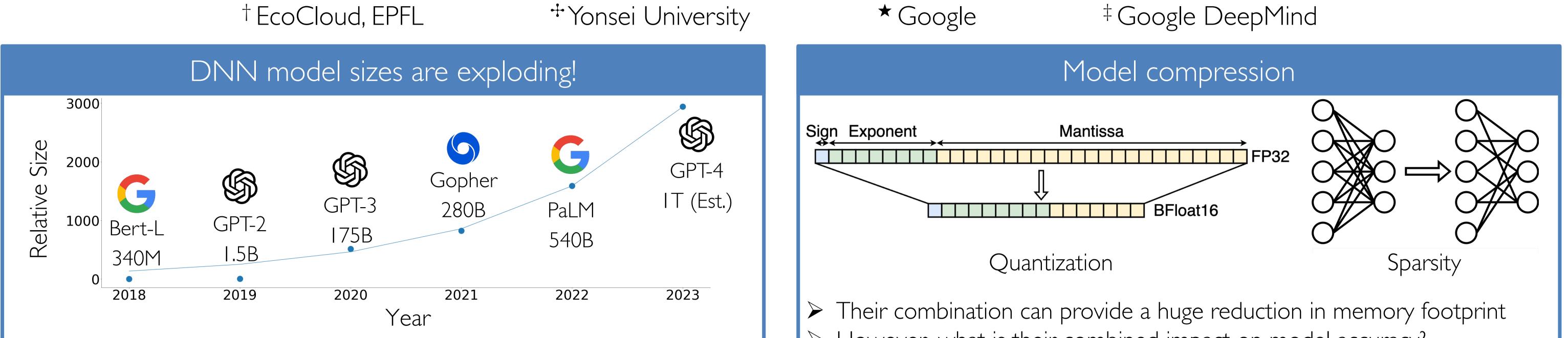


Simla Burcu Harma[†], Ayan Chakraborty[†], Elizaveta Kostenok[†], Danila Mishin[†], Dongho Ha[‡],

Babak Falsafi⁺, Martin Jaggi⁺, Ming Liu * , Yunho Oh ⁺, Suvinay Subramanian *, Amir Yazdanbakhsh [‡]



Memory footprint becomes a severe bottleneck during inference

 \succ However, what is their combined impact on model accuracy?

Research question and contributions

- > When sparsity and quantization are combined, are there additional errors introduced beyond those of each method individually?
- To answer this question, we conduct mathematical analysis of their combination
- \triangleright We mathematically define two tensor transformations f and g to be orthogonal if no additional error is introduced upon their combination: $\|\varepsilon_{fog}(x)\| \leq \|\varepsilon_f(x)\| + \|\varepsilon_g(x)\|$ and $\|\varepsilon_{gof}(x)\| \leq \|\varepsilon_f(x)\| + \|\varepsilon_g(x)\|$ for any input tensor x, where $\varepsilon_f(x) \coloneqq x - f(x)$
- > We mathematically demonstrate the non-orthogonality of sparsity and quantization at the (a) tensor level, and (b) dot-product level We empirically validate our mathematical findings and demonstrate end-to-end non-orthogonality across a diverse range of SOTA models

Tensor-level analysis

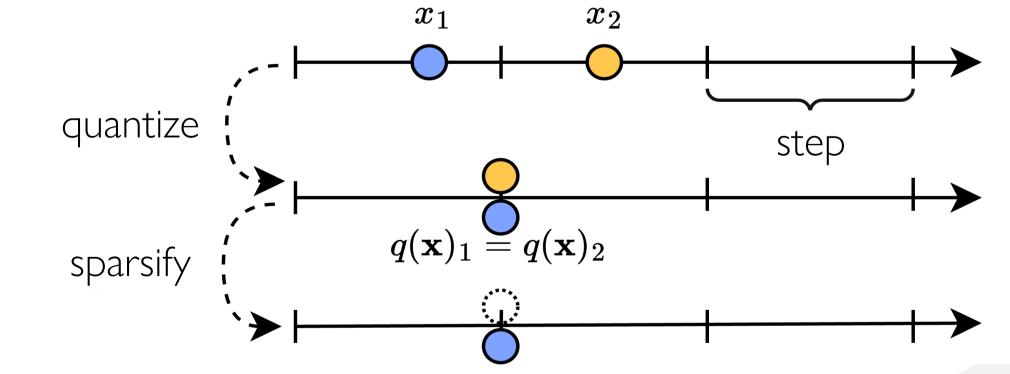
- Our mathematical analysis centers on:
- o Block-wise quantization
- o Magnitude-based sparsity

Dot-product-level analysis

- Our dot-product analysis focuses on the following set-up:
 - o Weights are both sparsified and quantized
 - o Activations are only quantized
- \succ If sparsity is applied before quantization, no additional error occurs $\|\varepsilon_{qos}(x)\| \le \|\varepsilon_q(x)\| + \|\varepsilon_s(x)\|$
- > However, applying quantization before sparsity yields additional error $\|\varepsilon_{soq}(x)\|_{1} \leq \|\varepsilon_{q}(x)\|_{1} + \|\varepsilon_{s}(x)\|_{1} + 2 \cdot \operatorname{step} \cdot \frac{M - N}{M} \cdot n$ additional error

 \succ Reason of the additional error:

- o Quantization can equalize elements
- o Sparsity can prune the element that was originally larger

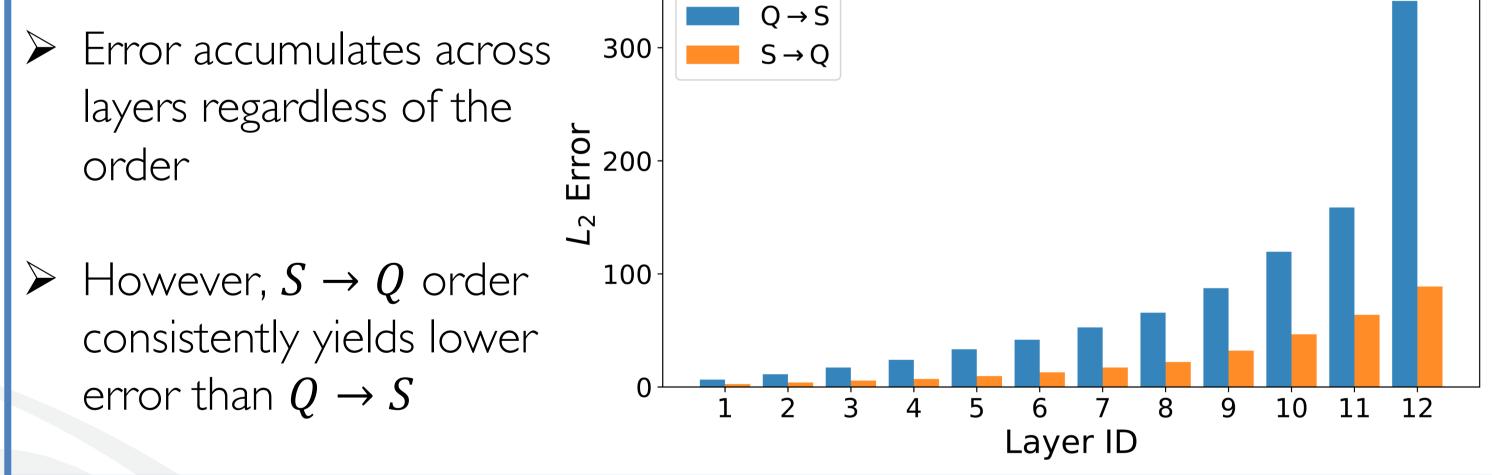


Therefore, applying sparsity before quantization is optimal

Optimal order of sparsity and quantization

- > Sparsity and quantization combined yield additional error in both orders
- > Therefore, quantization and sparsity are non-orthogonal
- \succ Moreover, the additional error has an upper bound: $\|\varepsilon_{q,c}^{D}(x,w)\| \leq \|\varepsilon_{I,s}^{D}(x,w)\| + \|\varepsilon_{q}^{D}(x,w)\| + \|\langle q(x), \tilde{\varepsilon}_{c}(w)\rangle\| + \|\langle \varepsilon_{q}(x), \varepsilon_{s}(w)\rangle\|$ additional error

 \succ The upper bound is significantly lower for $S \rightarrow Q$ order than $Q \rightarrow S$

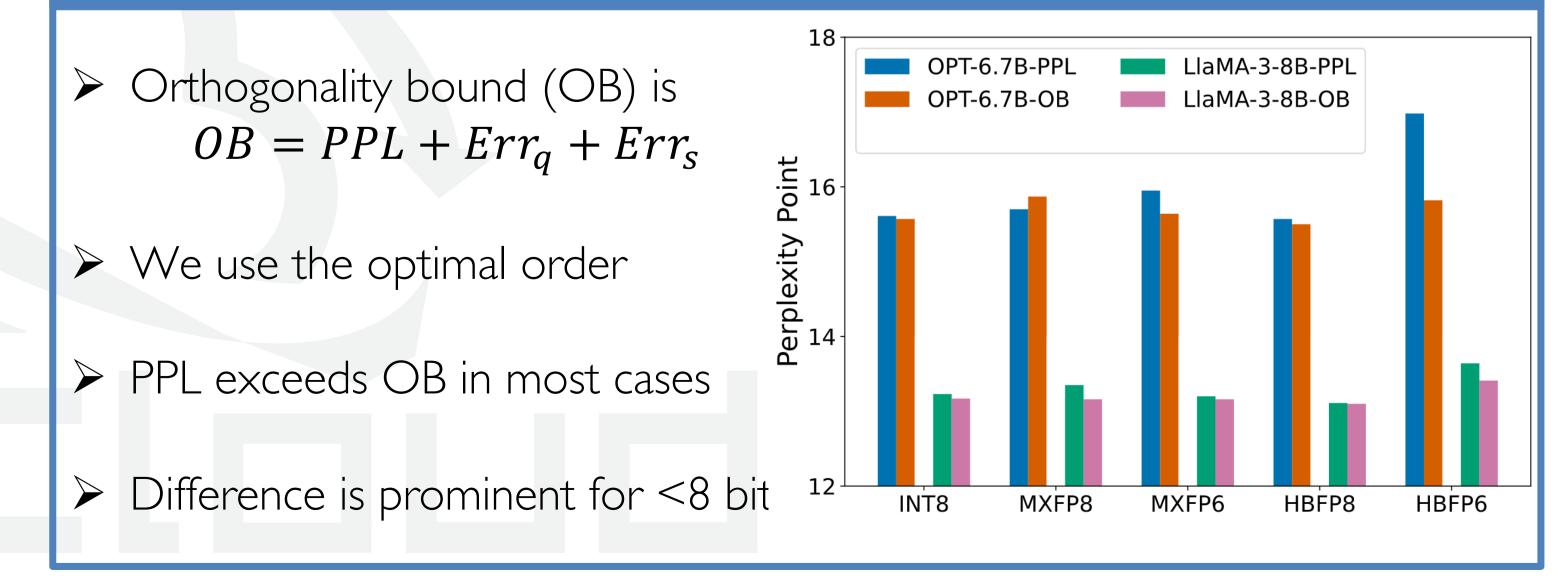


Non-orthogonality of sparsity and quantization

\blacktriangleright Sparsity followed by quantization is the optimal order

The sub-optimal order can cause up to 7.96 point increase in perplexity

Sparsity	LLaMA-2-7B						
type	Order	FP32	INT8	MXFP8	MXFP6	HBFP8	HBFP6
dense	_	5.12	5.15	5.17	5.16	5.12	5.24
50%	$S \rightarrow Q$	6.31	6.94	6.4	6.38	6.32	6.5 I
	$Q \rightarrow S$	_	8.13	8.47	9.32	9.86	10.2
2:4	$S \rightarrow Q$	9.3	9.37	9.35	9.32	9.39	10.68
	$Q \rightarrow S$	_	14.65	14.35	14.5	14.98	18.64



For more details and experimental results, please check out our paper!

