
Komb: Transparent Combining for Kernel
Vishal Gupta Kartikeya Kumar Dwivedi Sanidhya Kashyap

Existing lock design unable to provide optimal performance

Komb: Transparent Combining for Kernel

Conclusion: Reduce shared data movement to scale lock performance

Alternative Design: Move Computation to DataTraditional Design: Move Data to Computation

Kernel Locks

Macro-benchmark: FxMarkMicro-benchmark: Hash-Table

Komb Design Komb Flow

RS3LAB

Existing Locks :
 Reduce

contention of
lock cache
line.

 Require 
movement of
shared data 
cache line

 Fine-grained 
locking :
 Level locking
 Out-of-order 

(OOO) unlocks

 Different 
context :
 IRQ
 Migration

Existing Locks :
 Reduce

contention of
lock and 
shared data 
cache line.

 Require 
application 
rewrite

 Blocking 
vs non-
blocking 
locks

Hard to automatically identify critical section

 Stack Switch
 Transfer critical section context using stack.

 Stack Prefetching
 Overlap stack movement with CS execution.
.
 Shadow Stack enables :
 Async interrupt processing on waiter CPU.
 Async sleeping of waiter thread.
 Level locking and OOO unlocking.

Critical Section (CS) Latency

Traditional design unable to reduce CS latency

4.5X
2X

3.5X2X


