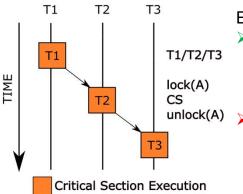
Komb: Transparent Combining for Kernel

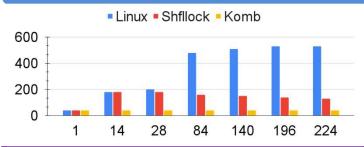
RS3LAB


Vishal Gupta

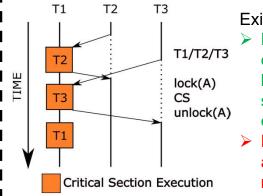
Kartikeya Kumar Dwivedi

Sanidhya Kashyap

Existing lock design unable to provide optimal performance


Traditional Design: Move Data to Computation

Existing Locks:


- Reduce contention of lock cache line.
 - Require movement of shared data cache line

Critical Section (CS) Latency

Traditional design unable to reduce CS latency

Alternative Design: Move Computation to Data

Existing Locks:

- Reduce contention of lock and shared data cache line.
- Require application rewrite

Kernel Locks

- Fine-grained locking:
 - > Level locking
- Out-of-order (OOO) unlocks
- Blocking vs non
 - s non- context : ocking ➤ IRQ
 - blocking > If locks
 - Migration

Different

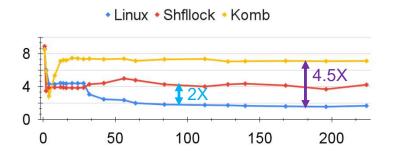
Hard to automatically identify critical section

Komb: Transparent Combining for Kernel

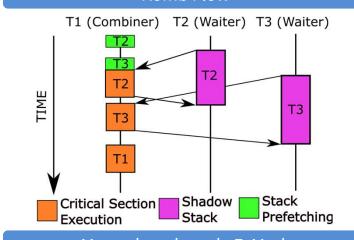
Komb Design

Stack Switch

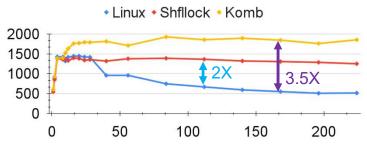
Transfer critical section context using stack.


Stack Prefetching

Overlap stack movement with CS execution.


Shadow Stack enables :

- > Async interrupt processing on waiter CPU.
- > Async sleeping of waiter thread.
- ➤ Level locking and OOO unlocking.


Micro-benchmark: Hash-Table

Komb Flow

Macro-benchmark: FxMark

Conclusion: Reduce shared data movement to scale lock performance