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1. Cloud economics demands multi-tenancy

3. Co-located database systems cannot fully utilize the underlying hardware

4. Separate control signals/loops 5. Better runtime resource allocation 

2. Database workloads are diverse

≥ 3 orders of magnitude difference in service time

Goal:
● Improve resource efficiency
● Meet SLAs
Under co-location
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● Transactions
○ 10 - 100’s us
○ us-scale scheduling interval

● Analytics
○ .1s - hours 
○ Highly variable
○ ms-scale scheduling interval
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Analytics TPC-H in DuckDB, sf=30
Intel Xeon E5-2680L v4, 2x14 cores
70MB LLC, 256GB memory
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Tradeoff 

Existing resource schedulers

● Avoid application co-location at potential interference
○ Bolt, Quasar, Borg, Heracles

● Partition shared resources at runtime to reduce interference
○ Ubik, Rubik, PARTIES, Caladan

However

● Fixed decision interval (PARTIES, CLITE, Aurora Serverless)
● Not considering the relative importance: 

○ Task latency and resource partitioning overhead
● Not adjusting the full resource spectrum (Caladan)

Co-located database systems cannot fully utilize the underlying hardware with existing resource schedulers
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Resource Isolation Tool Time to take effect
CPU core affinity taskset 10-100’s us
CPU core frequency ACPI frequency driver 100’s us 
LLC ways Intel CAT ms-scale (cache eviction/refilling)
Memory capacity Linux’s memory cgroups ms-scale (memory refilling)
Memory bandwidth Intel MBA ms-scale

Fast and adaptive core allocation for Tx

Adjust the full resource domain adaptively

Resource partitioning mechanisms have various overheads

+

Adjust core allocation with separate control loops

6. Efficient resource scheduling for DB systems under co-location
● Separate control loop for multiple resources with various decision intervals

● Relative importance between task latency & resource adjustment overhead

TPC-H in DuckDB, sf=30; 
TPC-C in Silo, sf=300;
Intel Xeon E5-2680L v4, 
28 logical cores, 
70MB LLC, 20 way, 
256GB memory


