
Efficient Scheduling for Multiple Database Systems on Shared Hardware
Yi Jiang, Anastasia Ailamaki

firstname.lastname@epfl.ch

1. Cloud economics demands multi-tenancy

3. Co-located database systems cannot fully utilize the underlying hardware

4. Separate control signals/loops 5. Better runtime resource allocation 

2. Database workloads are diverse

≥ 3 orders of magnitude difference in service time

Goal:
● Improve resource efficiency
● Meet SLAs
Under co-location

CPU

Private 
caches

Last-level cache (LLC)

CPU

Private 
caches

CPU

Private 
caches

…

Single node

App A App B App C

● Transactions
○ 10 - 100’s us
○ us-scale scheduling interval

● Analytics
○ .1s - hours 
○ Highly variable
○ ms-scale scheduling interval

Latency (s)

C
D

F

Analytics TPC-H in DuckDB, sf=30
Intel Xeon E5-2680L v4, 2x14 cores
70MB LLC, 256GB memory

[HPCA’22]

C
D

F

Transactions

Resource Efficiency

Performance

Tradeoff 

Existing resource schedulers

● Avoid application co-location at potential interference
○ Bolt, Quasar, Borg, Heracles

● Partition shared resources at runtime to reduce interference
○ Ubik, Rubik, PARTIES, Caladan

However

● Fixed decision interval (PARTIES, CLITE, Aurora Serverless)
● Not considering the relative importance: 

○ Task latency and resource partitioning overhead
● Not adjusting the full resource spectrum (Caladan)

Co-located database systems cannot fully utilize the underlying hardware with existing resource schedulers

DB 
workload

Core
controller

Other 
controller

CPU LLC
DRAM 

BW
DVFS

CPU utilization 
monitoring
fine-grained

Latency 
monitoring
coarse-grained

Resource Isolation Tool Time to take effect
CPU core affinity taskset 10-100’s us
CPU core frequency ACPI frequency driver 100’s us 
LLC ways Intel CAT ms-scale (cache eviction/refilling)
Memory capacity Linux’s memory cgroups ms-scale (memory refilling)
Memory bandwidth Intel MBA ms-scale

Fast and adaptive core allocation for Tx

Adjust the full resource domain adaptively

Resource partitioning mechanisms have various overheads

+

Adjust core allocation with separate control loops

6. Efficient resource scheduling for DB systems under co-location
● Separate control loop for multiple resources with various decision intervals

● Relative importance between task latency & resource adjustment overhead

TPC-H in DuckDB, sf=30; 
TPC-C in Silo, sf=300;
Intel Xeon E5-2680L v4, 
28 logical cores, 
70MB LLC, 20 way, 
256GB memory


